반응형 knn1 머신러닝 - K-최근접 이웃 회귀(KNN Regression) 알고리즘 특징과 코드 k-최근접 이웃 회귀(KNN Regression)은 새로운 데이터의 출력 값을 예측하기 위해 훈련 데이터의 출력 값과 가장 가까운 k개의 데이터를 사용합니다. k는 사용자 설정 매개변수이며, 값이 작을수록 더 많은 데이터를 고려하게 되고, 값이 클수록 더 적은 데이터를 고려하게 됩니다.k-최근접 이웃 회귀 알고리즘은 훈련 데이터에서 새로운 데이터와 가장 가까운 k개의 데이터를 찾아서, 해당 k개의 데이터의 출력 값을 평균하여 새로운 데이터의 출력 값을 예측하는 방식이다.k는 예측에 사용된 최근접 이웃 갯수로 만약 3개으로 하였다면, 3개의 최근접 이웃의 데이터를 통해 값을 예측한다. y(x) = \frac{\sum_{i=1}^k y_i^k}{k}- y(x)는 새로운 데이터 x의 출력 값을 예측한 값- y.. 2024. 6. 8. 이전 1 다음 반응형